Approximation by $\phi(ax) L(A, x)$ on Finite Point Sets

CHARLES B. DUNHAM

Computer Science Department, University of Western Ontario, London, Ontario, Canada Communicated by C. W. Clenshaw

Received December 1, 1975

Let $X = \{x_1, ..., x_N\}$ be a finite subset of the real line, $x_1 \cdot \cdots \cdot x_N$. Let ϕ be a continuous function on the real line and $\{\psi_1, ..., \psi_n\}$ a Chebyshev set on X, n < N. Define $L(A, x) = \sum_{k=1}^n a_k \psi_k(x)$, $F(A, x) = \phi(a_0 x) L(A, x)$. Let $\{f(A, x)\}$ be a given norm on the functions on X. Let G be a family of functions containing $\{F(A, \cdot)\}$. The approximation problem is: Given a function f on X, find $g^* \in G$ for which $\|f - g\|$ attains its infimum $\rho(f)$ over $g \in G$. Such an element g^* is called a best approximation. In this note we consider the existence of best approximations.

It is well known that a necessary and sufficient condition that every function on X have a best approximation from G is that G is closed. We, therefore, seek to find the family \overline{F} , the closure of $\{F(A, \cdot)\}$. This \overline{F} has the property that a best approximation from it always exists and it is the smallest family G containing $\{F(A, \cdot)\}$ with this property. Characterizing \overline{F} involves two steps. We must show that \overline{F} contains all limits of sequences from $\{F(A, \cdot)\}$. We must also show that each element of \overline{F} is a limit of a sequence from $\{F(A, \cdot)\}$. Since we may not know \overline{F} ahead of time, we will first consider limits of bounded sequences from $\{F(A, \cdot)\}$ and later see if every element of a family containing them is a limit of a bounded sequence.

Such an analysis has already been carried out for the case $\phi(x) = \exp(x)$ by the author [1].

It will be useful to have a norm on the coefficient vector of L, or equivalently, a seminorm on the parameter vector. Define

$$|A|^i = \max\{|a_i|: 1 < i \le n\}.$$

As the first part of our analysis, we consider the behavior of bounded sequences from $\{F(A, \cdot)\}$. Without loss of generality we will use the Chebyshev norm and consider

$$|F(A^k, \cdot)|_{\mathscr{I}} < M. \tag{1}$$

The sequence $\{a_0^k\}$ may not be bounded. However, as $[-\infty, \infty]$ is compact,

the sequence has a limit point a_0^0 in $[-\infty, \infty]$. By taking a subsequence if necessary, we can assume that $\{a_0^k\} \to a_0^0$ and in the remainder of the paper this will be assumed.

LEMMA 1. Let $\{F(A^k, \cdot)\}$ be a bounded sequence. Let a_0^0 be finite and nonzero. Let ϕ not vanish except possibly at zero. Then $\{F(A^k, \cdot)\} \to F(A^0, \cdot)$.

Proof. There are at least n points of X at which $\phi(a_0x)$ does not vanish, assume without loss of generality they are $x_1, ..., x_n$. Let

$$\mu = \min\{\phi(a_0^0 x_i) | : i = 1,..., n\}.$$

There exists K such that for k > K,

$$|\phi(a_0^k x_i)| \geqslant \mu/2$$
 $i = 1,..., n,$

hence

$$|L(A^k, x_i)| \leq 2M/\mu$$
 $i = 1,..., n, k > K.$

It follows that $\{\|A^k\|\}$ is bounded and so the limit $(a_1^0,...,a_n^0)$ of $(a_1^k,...,a_n^k)$ is finite. We have $\phi(a_0^kx) \to \phi(a_0^0x)$, $L(A^k,\cdot) \to L(A^0,\cdot)$, hence $F(A^k,\cdot) \to F(A^0,\cdot)$.

It is easily seen that the case where $a_0^0 = 0$ and $\phi(0) \neq 0$ is also taken care of by Lemma 1.

LEMMA 2. Let $\{F(A^k, \cdot)\}$ be a bounded sequence, Let $a_0^0 = 0$ and $\phi(x) = \sigma x^m + O(|x|^{m+1})$, $\sigma \neq 0$. Then $\{F(A^k, \cdot)\}$ has an accumulation point of the form $x^m L(A, x)$.

Proof. Assume without loss of generality that $a_0^k > 0$. There exists K such that

$$|\phi(a_0^k x)| \geqslant |\sigma(a_0^k x)^m|/2 \qquad k > K, x \in X.$$

Suppose that $\{\|(a_0^k)^m A^k\|\}$ was unbounded, then by taking a subsequence if necessary we can assume it tends to infinity, and by a standard result in linear approximation, a variant of which appears in the text of Rice [2, p. 24].

$$||L((a_0^k)^m A^k, \cdot)|| = ||(a_0^k)^m L(A^k, \cdot)|| \rightarrow \infty$$

and by (2)

$$||F(A^k,x)|| = ||\phi(a_0^kx)|L(A^k,x)|| \ge ||\sigma(a_0^kx)^m|L(A^k,x)|| \to \infty.$$

It follows that $(a_0^k)^m A^k$ is bounded and has a limit point A, assume it converges to A. Then

$$F(A^{k}, x) = [\sigma(a_{0}^{k}x)^{m} + O(|a_{0}^{k}x|^{m+1})] L(A^{k}, x)$$

$$= \sigma x^{m} L((a_{0}^{k})^{m} A^{k}, x) + O(|a_{0}^{k}|^{m+1}) L(A^{k}, x)$$

$$\to \sigma x^{m} L(A, x) + 0.$$

LEMMA 3. Let $\phi(0) = \sigma x^m \pm O(|x|^{m+1})$, $\sigma \neq 0$ and A be finite There exists a sequence $\{F(A^k, x)\} \rightarrow x^m L(A, x)$.

Proof. Let
$$F(A^k, x) = \phi(x/k) L(k^m A, x)/\sigma$$
, then

$$F(A^k, x) = (x^m/k^m) L(k^m A, x) + O((x/k)^{m+1}) L(k^m A, x)$$

= $x^m L(A, x) + O(1/k)$.

The remaining possibility is that $|a_0^0| = \infty$. What happens in this case varies with each ϕ .

EXPONENTIAL TYPE ϕ

As mentioned previously, the case where $\phi(x) = \exp(x)$ has already been studied [1]. We develop a theory to be applied to the cases $\phi(x) = \cosh(x)$ and $\phi(x) = \sinh(x)$.

LEMMA 4. Let $\phi(ax)/\phi(ay) \to 0$ for $0 \le x < y$ as $a \to \infty$. Let $x_1 > 0$, $a_0^0 = \infty$. Then $\{F(A^k, \cdot)\} \to 0$ on all but $x_{N-n+1}, ..., x_N$.

Proof. We can suppose without loss of generality that $||A^k|| \neq 0$ for all k. Define $B^k = A^k/||A^k||$, then $||B^k|| = 1$. $(b_1^k,...,b_n^k)$ has an accumulation point $(b_1,...,b_n)$, assume convergence occurs. As ||B|| = 1, $L(B,\cdot)$ is nonzero on at least one of $x_{N-n+1},...,x_N$. Assume without loss of generality it is nonzero on x_N . Let i < N-n+1 and consider

$$r_{i}^{k} = \frac{F(A^{k}, x_{i})}{F(A^{k}, x_{N})} = \frac{\phi(a_{0}^{k}x_{i})}{\phi(a_{0}^{k}x_{N})} \cdot \frac{L(A^{k}, x_{i})}{L(A^{k}, x_{N})} = \frac{\phi(a_{0}^{k}x_{i})}{\phi(a_{0}^{k}, x_{N})} \cdot \frac{L(B^{k}, x_{i})}{L(B^{k}, x_{N})}.$$

The ratio of ϕ 's tends to zero by hypothesis and the ratio of L's tends to $L(B, x_i)/L(B, x_N)$; hence $r_i^k \to 0$. But $|F(A^k, x_N)| < M$, so $F(A^k, x_i) \to 0$.

LEMMA 5. Let ϕ have no zeros for sufficiently large arguments. Let $\phi(ax)/\phi(ay) \to 0$ for $0 \le x < y$ as $a \to \infty$. Let $x_1 = 0$, and $x_1 = 0$ or $\phi(0) \ne 0$. Given constants $y_{N=u-1},...,y_N$ there exists a sequence $\{F(A^k,\cdot)\}$

such that $F(A^k, x_i) = y_i$, i = N - n + 1,..., N and $F(A^k, x_i) \rightarrow 0$ for $i \leq N - n$.

Proof. The lemma is obvious in the case all of y_{N-n+1} ,..., y_N are zero so we assume at least one is nonzero.

There exists K such that for $k \geqslant K$

$$\phi(kx_i) \neq 0$$
 $i = N - n + 1,..., N.$

Assume without loss of generality that K = 1. Let $a_0^k = k$. As $\{\psi_1, ..., \psi_n\}$ is a Chebyshev set on X, there exists $\{a_1^k, ..., a_n^k\}$ such that

$$L(A^k, x_i) = y_i/\phi(kx_i)$$
 $i = N - n + 1,..., N,$

then

$$F(A^k, x_i) = y_i$$
 $i = N - n + 1, ..., N.$

Arguing as in the previous lemma, we get $F(A^k, x_i) \to 0$ for $i \le N - n$. Let F^+ be the set of functions zero except on $\{x_{N-n+1}, ..., x_N\}$.

EXAMPLE 1. Let $x_1 \ge 0$. The closure of

$$F = \{\cosh(a_0 x) L(A, x)\} \text{ is } F \cup F^+.$$

Proof. By evenness of cosh we can assume that $a_0 \ge 0$. Lemmas 1 and 4 ensure that any bounded sequence from F has an accumulation point in $F \cup F^+$. Lemma 5 ensures that every element of $F \cup F^+$ is the limit of a sequence from F.

EXAMPLE 2. Let $x_1 \geqslant 0$. The closure of $F = \{\sinh(a_0x) L(A, x)\}$ is $F \cup F^+ \cup \{xL(A, x)\}$.

Proof. By oddness of sinh we can assume that $a_0 \ge 0$. Lemmas 1, 2, 4 ensure that any bounded sequence from F has an accumulation point in $F \cup F^+ \cup \{xL(A, x)\}$. Lemmas 3 and 5 ensure that every element of $F \cup F^+ \cup \{xL(A, x)\}$ is the limit of a sequence from F.

NEGATIVE EXPONENTIAL TYPE ϕ

LEMMA 6. Let $\phi(ax)/\phi(ay) \to 0$ for $0 \le y < x$ as $a \to \infty$. Let $x_1 \ge 0$, Let $a_0^0 = \infty$, then $\{F(A^k, \cdot)\} \to 0$ on all but $x_1 ..., x_n$.

The proof is similar to the proof of Lemma 4.

LEMMA 7. Let ϕ have no zeros for sufficiently large finite arguments. Let

 $\phi(ax)/\phi(ay) \to 0$ for $0 \le y < x$ as $a \to \infty$. Let $x_1 \ge 0$, and $x_1 > 0$ or $\phi(0) \ne 0$. Given constants $y_1, ..., y_n$ there exists a sequence $\{F(A^k, \cdot)\}$ such that $F(A^k, x_i) = y_i$, i = 1, ..., n and $F(A, x_i) \to 0$ for i > n.

The proof is similar to the proof of Lemma 5. Let F^- be the set of functions zero except on $\{x_1, ..., x_n\}$.

EXAMPLE 3. Let $x_1 \ge 0$. The closure of

$$F = \{ \operatorname{sech} (a_0 x) L(A, x) \}$$

is $F \cup F^{-}$

Proof. As sech is even, we can assume $a_0 \ge 0$. Lemmas 1 and 6 ensure that any bounded sequence from F has an accumulation point in $F \cup F^-$. Lemma 7 ensures that every element of $F \cup F^-$ is the limit of a sequence from F.

An identical result holds for $\phi(x) = \exp(-x^2)$.

Bounded ϕ

We consider the case where ϕ is continuous at $-\infty$ and $+\infty$.

LEMMA 8. Let $x_1 \ge 0$. Let ϕ be continuous and nonzero at ∞ . Let $\{F(A^k, \cdot)\}$ be bounded and $\{A^k\} \to A^0$. Let $a_0^0 = +\infty$ then $\{F(A^k, \cdot)\}$ has as an accumulation point a function of the type $\{L(A, \cdot)\}$ on $\{x_1, ..., x_N\} \sim \{0\}$.

Proof. There exists K such that for $k \ge K$,

$$||\phi(a_0^k x_i)| > ||\phi(\infty)|/2 \qquad x_i > 0.$$

By (1)

$$||\phi(a_0^k x_i)|| L(A^k, x_i)|| < M,$$

hence

$$|L(A^k,x_i)| < 2M/|\phi(\infty)| \qquad i > 1, k \geqslant K.$$

It follows that $(A^k + is)$ bounded and $(a_1^k, ..., a_n^k)$ has a finite limit point $(a_1^0, ..., a_n^0)$. Assume convergence occurs. Then

$$F(A^k, x_i) \rightarrow \phi(\infty) L(A^0, x_i)$$
 $x_i > 0.$

EXAMPLE 4. Let $x_1 > 0$. The closure of $F = \{\arctan(a_0x) \ L(A, x)\}$ is $F \cup \{xL(A, x)\} \cup \{L(A, \cdot)\}$.

Proof. By oddness of arctan we can assume $a_0 \ge 0$. By Lemmas 1, 2, and 8, a bounded sequence from F has an accumulation point in the given set.

By Lemma 3 and simple arguments similar to those of Lemma 8 any function of the form xL(A, x) or $L(A, \cdot)$ is a limit of elements of F.

Exactly the same result holds for $\phi(x) = \tanh(x)$.

ARGUMENTS RESTRICTED TO A CLOSED SET

Some functions ϕ which we might wish to consider are defined and continuous only on a closed finite interval, causing us to restrict the parameter a_0 to a closed finite interval. For example the functions arcsin, arcos, and arctanh are only defined on [--1, 1]. The case where a_0 is restricted to a closed finite interval I containing 0 is handled by Lemmas 1, 2, 3. We get the closure of $F = \{\phi(a_0x) \ L(A, x) : a_0 \in F\}$ being F if $\phi(0) \neq 0$ and $F \cup \{x^m L(A, x)\}$ if $\phi(x) = \sigma x^m + O(\|x\|^{m+1})$.

REFERENCES

- 1. C. B. Dunham, Approximation by exponential-polynomial products on finite point sets, *J. Inst. Math. Appl.* 10 (1972), 125-127.
- 2. J. RICE, "The Approximation of Functions," Vol. 1, Addison-Wesley, Reading, Mass., 1964.